
Leveraging	Containers	and	OpenStack
A	Comprehensive	Review
Introduction

Imagine	that	you	are	tasked	to	build	an	entire	private	cloud	infrastructure	from	the	ground	up.	You	have	a	limited
budget,	a	small	but	dedicated	team,	and	are	asked	to	pull	off	a	miracle.

A	few	years	ago,	you’d	build	an	infrastructure	with	applications	running	in	virtual	machines,	with	some	bare-metal
machines	for	legacy	applications.	As	infrastructure	has	evolved,	virtual	machines	(VMs)	enabled	greater	levels	of
efficiency	and	agility,	but	VMs	alone	don’t	completely	meet	the	needs	of	an	agile	approach	to	application	deployment.
They	continue	to	serve	as	a	foundation	for	running	many	applications,	but	increasingly,	developers	are	looking	toward
the	emerging	trend	of	containers	for	leading-edge	application	development	and	deployment	because	containers	offer
increased	levels	of	agility	and	efficiency.

Container	technologies	like	Docker	and	Kubernetes	are	becoming	the	leading	standards	for	building	containerized
applications.	They	help	free	organizations	from	complexity	that	limits	development	agility.	Containers,	container
infrastructure,	and	container	deployment	technologies	have	proven	themselves	to	be	very	powerful	abstractions	that	can
be	applied	to	a	number	of	different	use	cases.	Using	something	like	Kubernetes,	an	organization	can	deliver	a	cloud	that
solely	uses	containers	for	application	delivery.

But	a	leading-edge	private	cloud	isn’t	just	about	containers,	and	containers	aren’t	appropriate	for	all	workloads	and	use
cases.	Today,	most	private	cloud	infrastructures	need	to	encompass	bare-metal	machines	for	managing	infrastructure,
virtual	machines	for	legacy	applications,	and	containers	for	newer	applications.	The	ability	to	support,	manage	and
orchestrate	all	three	approaches	is	the	key	to	operational	efficiency.

OpenStack	is	currently	the	best	available	option	for	building	private	clouds,	with	the	ability	to	manage	networking,
storage	and	compute	infrastructure,	with	support	for	virtual	machines,	bare-metal,	and	containers	from	one	control
plane.	While	Kubernetes	is	arguably	the	most	popular	container	orchestrator	and	has	changed	application	delivery,	it
depends	on	the	availability	of	a	solid	cloud	infrastructure,	and	OpenStack	offers	the	most	comprehensive	open	source
infrastructure	for	hosting	applications.	OpenStack’s	multi-tenant	cloud	infrastructure	is	a	natural	fit	for	Kubernetes,	with
several	integration	points,	deployment	solutions,	and	ability	to	federate	across	multiple	clouds.

In	this	paper,	we’re	going	to	explore	how	containers	work	within	OpenStack,	examine	various	use	cases,	and	provide	an
overview	of	open	source	projects,	from	OpenStack	and	elsewhere,	that	help	make	containers	a	technology	that’s	easily
adopted	and	utilized.

I.	A	High	Level	View	of	Containers	in	OpenStack

There	are	three	primary	scenarios	where	containers	and	OpenStack	intersect.

The	first	scenario,	called	infrastructure	containers,	allows	operators	to	leverage	containers	in	a	way	that	improves	cloud

https://www.docker.com/open-source-0
https://kubernetes.io/
https://openstack.org/


infrastructure	deployment,	management,	and	operation.	In	this	scenario,	containers	are	set	up	on	a	bare-metal
infrastructure,	and	are	allowed	privileged	access	to	host	resources.	This	access	allows	them	to	take	direct	advantage	of
compute,	networking,	and	storage	resources	that	container	runtimes	are	typically	trying	to	hide	from	users.	The
containers	isolate	the	often	complex	set	of	dependencies	that	each	application	depends	on,	while	still	allowing	the
infrastructure	applications	to	directly	manage	and	manipulate	the	underlying	system	resources.	When	the	time	comes	to
upgrade	an	service,	the	upgrade	can	be	handled	without	changes	in	dependencies	disrupting	co-located	services.

Modern	versions	of	OpenStack	have	embraced	this	infrastructure	container	model,	and	it’s	now	normal	to	manage	an
entire	lifecycle	of	an	OpenStack	deployment	with	a	combination	of	orchestration	tooling	and	containerized	services.
Infrastructure	containers	enable	operators	to	use	container	orchestration	technologies	to	solve	many	issues,	particularly
around	rapidly	iterating/upgrading	existing	software	including	OpenStack.	Running	OpenStack	within	containers	helps
operators	to	solve	Day	2	challenges,	including	adding	new	components	for	services,	upgrading	versions	of	software
quickly,	and	rapidly	rolling	updates	across	machines	and	data	centers.	This	approach	brings	the	agility	of	containers	to
the	problem	of	OpenStack	deployment	and	upgrades.

The	second	scenario	is	concerned	with	hosting	containerized	application	frameworks	on	cloud	infrastructure.	These	can
include	Container	Orchestration	Engines	(COEs)	like	Docker	Swarm	and	Kubernetes,	or	lighter-weight	container-focused
services	and	serverless	application	programming	interfaces	(APIs).	Whether	on	bare-metal	or	VMs,	the	OpenStack
community	has	worked	to	ensure	that	it’s	possible	to	deliver	containerized	applications	on	a	secure,	tenant-isolated	cloud
host.	This	scenario	is	facilitated	by	drivers	that	allow	projects	like	Kubernetes	to	directly	take	advantage	of	OpenStack
APIs	for	storage,	load-balancing,	and	identity.	It	also	includes	APIs	for	provisioning	managed	Kubernetes	clusters	and
application	containers	on	demand.	With	these	capabilities,	development	teams	can	write	new	containerized	applications
and	quickly	provision	Kubernetes	clusters	on	OpenStack	clouds.	It’s	a	complete	application	lifecycle	solution	that	gives
them	the	resources	needed	to	develop,	test,	and	debug	their	code,	with	robust	automation	to	deploy	their	applications
into	production.

In	the	final	scenario,	we	consider	the	interactions	between	independent	OpenStack	and	COE	deployments,	and	in	this
paper	particularly	Kubernetes	clusters.	Consistency	and	interoperability	of	APIs	across	both	OpenStack	and	Kubernetes
clusters	is	the	primary	source	of	success	for	this	scenario.	For	example,	it’s	possible	for	Kubernetes	to	directly	attach	to
OpenStack	Cinder	hosted	volumes,	use	OpenStack	Keystone	as	an	authorization	and	authentication	backend,	or	connect
to	OpenStack	Neutron	as	a	network	overlay	with	OpenStack	Kuryr.	Conversely,	it’s	possible	for	an	OpenStack	cloud	to
share	the	same	network	overlay	as	a	Kubernetes	cluster	with	Neutron	drivers	for	projects	like	Calico.	The	third	scenario	is
less	focused	on	how	a	cloud	service	is	hosted	(be	it	Kubernetes	or	OpenStack),	and	more	on	how	independent	services
interact.

II.	OpenStack	Container	Integration	Points

Deploying	OpenStack	Infrastructure	on	Containers

As	noted	in	the	introduction,	the	deployment	and	management	of	OpenStack	has	changed	significantly	with	the	rise	of
containers,	because	containers	unlock	new	approaches	to	managing	infrastructure	code.	Previous	management
strategies	required	either	the	creation	and	maintenance	of	heavyweight	golden	machine	images,	or	using	brittle	state-
maintaining	configuration-management	systems.	Each	approach	comes	with	complexities	and	restrictions.	Adding	to	the
degree	of	difficulty	is	the	management	of	a	collection	of	services	that	all	require	their	own	dependencies	that	change
from	release-to-release.	Without	some	form	of	application	isolation,	solving	for	the	dependencies	becomes	difficult	if	not
impossible.

Infrastructure	containers	enable	new	OpenStack	deployment	projects	to	strike	a	balance	between	the	two	while	elegantly
solving	the	dependency	problem.	Using	lightweight,	independent,	self-contained,	and	typically	stateless	application
containers,	a	cloud	operator	gains	tremendous	flexibility	when	deploying	a	complex	control	plane.	Combined	with	a
container	runtime	and	an	orchestration	engine,	infrastructure	containers	make	it	possible	to	quickly	deploy,	maintain,
and	upgrade	complex	and	highly	available	infrastructure.

In	building	an	OpenStack	cluster,	there	are	several	dimensions	for	choosing	deployment	technologies.	An	operator	could
choose	Linux	Containers	(LXC)	or	Docker	for	their	base	containers,	use	pre-built	or	custom-built	application	containers,
and	select	either	traditional	configuration-management	systems	for	orchestration	or	a	more	modern	approach	like
Kubernetes.	Table	1	summarizes	the	existing	OpenStack	deployment	projects	and	their	underlying	technologies.

https://docs.openstack.org/cinder/latest/
https://docs.openstack.org/keystone/latest/
https://docs.openstack.org/neutron/latest/
https://docs.openstack.org/kuryr/latest/
https://www.projectcalico.org/
https://linuxcontainers.org/


Table	1

Project

OpenStack-Ansible

Kolla-Ansible

Triple-O

OpenStack-Helm

Container	Type

LXC

Docker

Docker

Docker

Supported	Containers

OSA LXC Containers

Kolla Containers

Kolla Containers

Kolla Containers 

Loci Containers

Project

Ansible

Ansible

Ansible

Kubernetes and Helm

Underlying	each	of	these	deployment	systems	are	different	approaches	to	building	a	set	of	containers	for	the	OpenStack
code	and	supporting	services.	The	OpenStack	Ansible	(OSA)	and	Kolla	projects	provide	their	own	project-hosted	build
systems,	while	LOCI	focuses	on	building	project	application	containers,	without	a	specific	orchestration	system	in	mind.
At	a	high	level,	the	differences	are:

1.	 OSA	is	unique	in	that	it	relies	on	lower-level	LXC	containers,	and	has	a	custom	build	system	for	creating	LXC
application	containers.

2.	 The	Kolla	build	system	produces	Docker	containers,	one	for	each	service,	along	with	supporting	containers	for
initializing	and	managing	an	OpenStack	deployment.	Kolla	containers	are	highly	configurable,	with	a	choice	of	base
operating	system,	source	or	package	installations,	and	a	template	engine	for	even	further	customization.

3.	 The	final	option	for	building	OpenStack	application	containers	is	LOCI.	LOCI	also	builds	Docker	containers,	and
delivers	one	container	for	each	project.	LOCI	is	focused	on	producing	compact	and	secure	containers	quickly,	for	all
common	distributions,	with	the	expectation	that	they	will	be	used	as	a	foundation	to	build	upon	by	the	deployment
system.

Bare-Metal	Infrastructure	-	OpenStack	and	Solving	the	Bootstrap	Problem

At	the	foundation	of	every	cloud,	there	exists	a	data	center	of	bare-metal	servers	that	host	the	infrastructure	services.
Even	“serverless	computing”	is	running	software	on	a	cloud	on	hardware	in	a	data	center.	The	problem	of	how	to
bootstrap	hardware	infrastructure	is	a	critical	problem	that	OpenStack	software	is	uniquely	qualified	to	address	in	a	way
that	gives	cloud-like	qualities	to	bare-metal	management.

OpenStack	Ironic	provides	bare-metal	as	a	service.	As	a	standalone	service	it	can	discover	bare-metal	nodes,	catalog
them	in	a	management	database,	and	manage	the	entire	server	lifecycle	including	enrolling,	provisioning,	maintenance,
and	decommissioning.	When	used	as	a	driver	to	OpenStack	Nova	and	combined	with	the	full	suite	of	OpenStack	services,
it	delivers	a	powerful,	cloud-like	service	for	managing	your	entire	bare-metal	infrastructure.

This	raises	the	question:	How	does	one	bootstrap	OpenStack	services	to	manage	bare-metal	infrastructure?	One	typical
solution	is	to	use	the	same	container-based	installation	tools	as	described	in	the	previous	sections	to	create	a	seed
installation.	This	seed,	often	called	an	‘undercloud’,	can	be	used	to	entirely	automate	the	management	of	a	bare-metal
cluster	as	if	it	were	a	virtualized	cloud.

This	opens	up	an	opportunity	to	not	just	run	OpenStack	virtualization	on	a	bare-metal	cloud,	but	to	also	run	bare-metal
Kubernetes-only	installations	that	can	take	full	advantage	of	the	identity,	storage,	networking,	and	other	cloud	APIs
available	through	OpenStack	services.

Delivering	Container-Based	Applications	on	OpenStack

Both	infrastructure	containers	and	bare-metal	infrastructure	are	important,	but	when	most	people	think	of	containers,
they’re	thinking	of	application	containers.	The	isolation,	encapsulation,	and	ease	of	maintenance	offered	by	containers
makes	them	an	ideal	solution	for	delivering	applications.	However,	containers	still	need	a	host	platform	to	serve	them
from,	whether	bare-metal,	public	cloud,	or	private	cloud.

Kubernetes	is	a	platform	for	delivering	applications,	and	works	best	with	cloud-APIs	that	can	automate	the	delivery	of
critical	infrastructure	such	as	permanent	storage,	load-balancers,	networks,	and	dynamic	allocation	of	compute	nodes.
OpenStack	delivers	cloud	infrastructure,	whether	as	an	on-prem	private	cloud	or	through	any	of	the	available	public	or
managed	OpenStack	clouds.

OpenStack	was	one	of	the	first	upstream	cloud	providers	for	Kubernetes,	with	an	active	team	of	developers	maintaining
the	"Kubernetes/Cloud	Provider	OpenStack"	plugin.	This	plugin	allows	Kubernetes	to	take	advantage	of	Cinder	block
storage,	Neutron	and	Octavia	Load	Balancers,	and	direct	management	of	compute	resources	with	Nova.	Using	the
provider	is	as	simple	as	deploying	the	driver	to	your	Kubernetes	installation,	setting	a	flag	to	load	the	driver,	and
providing	your	local	user	cloud	credentials.

https://docs.openstack.org/ironic/latest/
https://docs.openstack.org/nova/latest/
https://github.com/kubernetes/cloud-provider-openstack
https://docs.openstack.org/octavia/latest/


There	are	a	number	of	solutions	for	installing	Kubernetes	and	other	application	frameworks	on	top	of	OpenStack.	One	of
the	easiest	ways	to	deliver	container	frameworks	is	to	use	Magnum,	an	OpenStack	project	that	provides	a	simple	API	to
deploy	fully	managed	clusters	backed	by	a	choice	of	several	application	platforms,	including	Kubernetes.	It’s	an	example
of	a	Kubernetes	deployment	system	that	relies	on	OpenStack	APIs	and	cloud	provider	plugin.	For	example,	right	now	it’s
being	used	to	manage	over	200	independent	and	federated	Kubernetes	installations	on	CERN’s	OpenStack	on-site	cloud,
as	well	as	on	partner	clouds.	If	you	don’t	have	the	Magnum	API	available	to	you	in	your	preferred	OpenStack	cloud,	you
can	use	any	other	Kubernetes	installation	tools	such	as	the	kubeadm,	Kubernetes	Anywhere,	Cross-Cloud,	or	Kubespray,
to	install	and	manage	your	Kubernetes	cluster	on	OpenStack.	Because	each	uses	standard	Kubernetes,	it’s	easy	to
enable	the	cloud	provider	interface	to	take	advantage	of	storage	and	load	balancing.

Zun,	another	OpenStack	project,	offers	a	lighter-weight	container	service	API	for	managing	individual	containers	without
the	need	for	managing	servers	or	clusters.	An	OpenStack-hosted	Kubernetes	cluster	is	elastic	because	it	can	be
dynamically	resized	by	adding	or	removing	cloud	resources	to	the	cluster	directly	through	the	Nova	API.	Alternatively,
Kubernetes	can	serve	as	a	container	backend	to	OpenStack	Zun,	turning	over	the	management	of	the	pod	infrastructure
to	Zun.	It	offers	a	lighter-weight	and	multi-tenant	container	service	API	for	running	containers	without	the	need	for
directly	creating	servers.	Direct	integration	with	Neutron	and	Cinder	are	used	to	provide	networking	and	volumes	for
individual	containers.

Finally,	the	Qinling	project	offers	"Function	as	a	Service"	that	aims	to	provide	a	platform	to	support	serverless	functions,
similar	to	Lambda,	Azure	Functions,	or	Google	Cloud	Functions.	It	further	abstracts	the	management	of	containers,	and
allows	users	to	accelerate	development	with	an	event-driven,	serverless	compute	experience	that	scales	on	demand.
Qinling	supports	different	container	orchestration	backends	like	Kubernetes	and	Docker	swarm,	a	variety	of	popular
function	package	storage	backends	like	local	storage	and	OpenStack	Swift.

Kata	Containers	-	Secure	Applications	through	Virtualization

Kata	Containers,	a	new	open	source	project,	is	a	novel	implementation	of	a	lightweight	virtual	machine	that	seamlessly
integrates	within	the	container	ecosystem.	Kata	Containers	are	as	light	and	fast	as	containers	and	integrate	with	the
container	management	layers	–	including	popular	orchestration	tools	such	as	Docker	and	Kubernetes	(k8s)	–	while	also
delivering	the	security	advantages	of	VMs.	Kata	Containers	adhere	to	the	Open	Container	Initiative	(OCI)	standard,	which
the	OpenStack	Foundation	is	an	active	member	of.	Kata	Containers	is	hosted	at	the	OpenStack	Foundation,	but	is	a
separate	project	from	the	OpenStack	project	with	its	own	governance	and	community.

The	industry	shift	to	containers	presents	unique	challenges	in	securing	user	workloads	within	multi-tenant	environments
with	a	mix	of	both	trusted	and	untrusted	workloads.	Kata	Containers	uses	hardware-backed	isolation	as	the	boundary	for
each	container	or	collection	of	containers	in	a	pod.	This	approach	addresses	the	security	concerns	of	a	shared	kernel	in	a
traditional	container	architecture.

Kata	Containers	is	an	excellent	fit	for	both	on-demand,	event-based	deployments	such	as	continuous
integration/continuous	delivery,	as	well	as	longer	running	web	server	applications.	Kata	also	enables	an	easier	transition
to	containers	from	traditional	virtualized	environments,	as	it	supports	legacy	guest	kernels	and	device	pass	through
capabilities.	Kata	Containers	deliver	enhanced	security,	scalability	and	higher	resource	utilization,	while	at	the	same	time
leading	to	an	overall	simplified	stack.

Side-by-Side	OpenStack	and	Kubernetes	Integrations

https://docs.openstack.org/magnum/latest/
http://openstack-in-production.blogspot.com/2017/01/containers-on-cern-cloud.html
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubernetes-anywhere
https://github.com/crosscloudci/cross-cloud
https://github.com/kubernetes-incubator/kubespray
https://docs.openstack.org/zun/latest/
https://docs.openstack.org/swift/latest/
https://katacontainers.io/
https://www.opencontainers.org/


One	of	the	primary	benefits	of	choosing	open	source	platforms	is	in	the	stability	of	interfaces	across	standard
deployments	of	those	platforms.	Both	the	OpenStack	Foundation	and	the	Cloud	Native	Computing	Foundation	(CNCF)
maintain	interoperability	standards	for	OpenStack	clouds	and	Kubernetes	clusters,	guaranteeing	that	libraries,
applications,	and	drivers	will	work	across	all	platforms	regardless	of	where	they	are	deployed.	This	creates	opportunities
for	side-by-side	integrations,	allowing	both	OpenStack	and	Kubernetes	to	take	advantage	of	the	resources	provided	by
the	other.

The	OpenStack	Special	Interest	Group	(SIG-OpenStack)	in	the	Kubernetes	community	maintains	the	Cloud	Provider
OpenStack	plugin.	In	addition	to	cloud	provider	interface	for	running	Kubernetes	on	OpenStack,	it	also	maintains	several
drivers	that	allows	Kubernetes	to	take	advantage	of	individual	OpenStack	services.	These	drivers	include:

Two	standalone	Cinder	drivers.	A	Flex	Volume	driver	uses	an	exec-based	model	to	interface	with	drivers,	and	a
Container	Storage	Interface	(CSI)	driver	which	uses	a	standard	interface	for	container	orchestration	systems	to
expose	arbitrary	storage	systems	to	their	container	workloads.	With	support	for	over	70	storage	drivers,	these
drivers	make	it	possible	to	interface	a	wealth	of	battle	tested	proprietary	and	open	source	storage	devices	through	a
single	Cinder	API.
A	webhook-based	authentication	and	authorization	interface	to	Keystone.	Each	mode,	authentication	and
authorization,	can	be	configured	independently	of	one	another.	Though	a	work	in	progress,	the	interface	supports	a
soft-multi-tenancy	that	backs	Kubernetes	RBAC	with	OpenStack	Keystone.

Both	OpenStack	and	Kubernetes	support	highly	dynamic	networking	models	that	are	backed	by	a	variety	of	drivers.
Because	of	these	standard	network	interfaces,	it’s	easy	to	build	standalone	OpenStack	and	Kubernetes	clusters	with
strong	network	integrations.	Within	OpenStack,	the	Kuryr	project	produces	a	Common	Network	Interface	(CNI)	driver	that
delivers	Neutron	networking	to	Docker	and	Kubernetes.	On	the	flip	side,	there	projects	like	Calico	offer	Neutron	drivers,
providing	direct	access	to	popular	Kubernetes	network	overlays	through	standard	Neutron	APIs.

III.	Case	Studies

Many	members	of	the	OpenStack	community	are	contributing	new	code	to	various	OpenStack	projects	relevant	to
containers,	evaluating	the	implications	and	benefits	of	containers,	and	using	containers	in	production	to	solve	challenges
and	unlock	new	capabilities.	This	section	highlights	some	of	the	most	interesting	case	studies.

AT&T

AT&T,	one	of	the	largest	telecommunications	companies	in	the	world,	leverages	container	technology	to	deploy	and
manage	OpenStack	itself,	relying	on	infrastructure	containers	to	generate	simplicity	and	efficiency,	with	the	aim	of
building	their	5G	infrastructure	on	containerized	OpenStack.

To	accomplish	their	goals,	AT&T	is	using	the	OpenStack-Helm	project	to	orchestrate	LOCI-based	OpenStack	images
across	a	Kubernetes	cluster,	also	leveraging	Kubernetes,	Docker,	and	the	core	OpenStack	services.	They’re	also	using
Bandit,	Tempest,	Patrole,	and	many	other	OpenStack	projects.	AT&T	is	also	collaborating	in	the	community	to	introduce	a
collection	of	undercloud	projects	called	Airship,	which	will	provision	clouds	from	bare-metal	to	production-grade
Kubernetes	running	OpenStack	workloads.

AT&T	is	finding	that	containerization	allows	them	to	shift	traditional	deployment-type	activities	far	to	the	left,	and	to
validate	them	using	CI/CD.	Kubernetes	additionally	provides	massive	scalability	and	resiliency,	as	well	as	hooks	to	allow
OpenStack-Helm	to	declaratively	configure	operational	behavior,	inject	configuration,	and	accomplish	rolling	upgrades
and	updates	without	impacting	tenant	workloads.

Leveraging	container	technology	to	deploy	and	manage	OpenStack	shouldn’t	have	much	obvious	impact	on	tenants	—
with	the	exception	that	they	will	have	a	more	highly	resilient	platform,	and	will	be	able	to	get	cloud	features	more

http://www.airshipit.org/


frequently	and	with	minimal	interruption.	AT&T’s	operations	teams	new	experience	will	shift	more	of	their	efforts	to
defining	the	declarative	configuration	for	a	site,	and	to	let	the	Kubernetes-oriented	automation	carry	out	the	deployments
themselves.

AT&T	aims	to	use	this	architecture	to	power	the	virtual	network	functions	that	form	the	backbone	of	its	consumer	and
business-focused	products	and	services.	The	initial	use	case	for	AT&T’s	containerized	Network	Cloud	will	be	the	initial
deployment	of	VNFs	for	the	emerging	5G	networking.	OpenStack	has	been,	is,	and	will	be	an	excellent	fit	for	AT&T’s	VNF-
focused	cloud	use	cases.	Containerization	is	simply	an	evolution	that	allows	AT&T	to	deploy,	manage,	and	scale	their
OpenStack	infrastructure	in	a	more	reliable,	rapid,	zero-touch	manner.

Operationally,	AT&T	is	still	testing	this	approach	but	has	committed	to	getting	5G	service	into	production	before	the	end
of	the	year.	OpenStack	and	container	technology	will	form	the	backbone	of	this	service,	which	is	strategically	important
for	AT&T’s	millions	of	users.	Deploying	their	5G	service	will	demonstrate	the	relevance	of	OpenStack	and	containers	in	a
massively	distributed	production	environment.

Cern

CERN,	the	European	Organization	for	Nuclear	Research,	enables	physicists	and	engineers	to	probe	the	fundamental
structure	of	the	universe,	using	the	world’s	largest	and	most	complex	scientific	instruments	to	study	the	basic
constituents	of	matter	–	the	fundamental	particles.	The	CERN	cloud	provides	physicists	with	compute	resources	for
scientific	computing,	analyzing	data	coming	from	the	Large	Hadron	Collider	and	other	experiments.

CERN	has	been	running	OpenStack	in	production	since	2013	and	is	now	providing	services	for	virtual	machines,	bare-
metal	and	containers	within	a	single	cloud.	Containers	run	on	either	virtual	machines	or	bare-metal	depending	on	the	use
cases,	all	provisioned	via	OpenStack	Magnum.	A	selection	of	different	container	technologies	are	available	including
Kubernetes,	Docker	Swarm	and	DC/OS.

CERN	is	currently	running	250	container	clusters	provisioned	through	Magnum	on	top	of	OpenStack.

CERN’s	OpenStack	cloud	gives	users	self-service	access	to	request	a	configured	container	engine	with	a	couple	of
commands	or	via	a	web	GUI.	This	allows	rapid	utilization	of	the	technologies	and	can	scale	to	1000s	of	nodes	if	needed.
Best	practice	configurations	are	available	with	built	in	monitoring	and	integration	into	CERN	storage	and	authentication
services.

Running	this	resource	pool	efficiently,	scaling	it	without	needing	extra	operations	manpower	requires	consistent
management	processes	and	tools.	Adding	containers	via	Magnum	on	top	of	OpenStack	enabled	the	service	to	use	the
automation	previously	developed,	such	as	hardware	repair	processes	and	consistent	authorisation	models	while
supporting	rapidly	reallocation	of	resources	depending	on	user	needs.

As	a	publicly	funded	laboratory,	open	source	solutions	such	as	Kubernetes	and	OpenStack	provide	a	framework	to
collaborate	with	other	organisations	and	give	back	to	the	communities.	CERN	has	worked	with	a	number	of	vendors
through	the	CERN	openlab	framework,	such	as	Rackspace	and	Huawei,	to	provide	clouds	at	scale	with	functionalities	like
Magnum	and	federation.	These	experiences	are	also	shared	through	OpenStack	Special	Interest	Groups,	with	other
sciences	such	as	the	Square	Kilometer	Array	(SKA),	public	presentations	such	as	Kubecon	Europe	and	blogs	such	as	the
OpenStack	in	Production.

https://openlab.cern/
http://openstack-in-production.blogspot.fr/


At	CERN,	several	workloads	run	within	containers	provisioned	by	Magnum,	these	include:

Reana/Recast
These	tools	provide	a	framework	for	executing	reusable	workflows	in	High	Energy	Physics.	Containers	offer	the
ability	to	package	the	analysis	software	and	data	in	a	single,	easily	shareable	unit	as	well	as	easy	scaling	out
both	on-premises	and	using	external	resources.	Work	is	scheduled	as	Kubernetes	jobs	based	on	Yadage
Workflows	supporting	analysis	and	data	preservation	activities.

Spark	as	a	Service
Recently,	Kubernetes	was	added	as	a	resource	manager	for	Spark.	Spark	can	spawn	drivers	and	executors	as
pods	and	Kubernetes	is	responsible	for	the	scheduling	and	lifecycle.	A	team	in	the	CERN	IT	department	is
developing	a	service	where	users	can	create	Kubernetes	clusters	on	demand	with	OpenStack	Magnum	and
deploy	Spark	on	Kubernetes,	providing	all	the	required	integrations	with	CERN’s	specialized	filesystems	and
data	sources	in	a	secure	way.	Users	with	a	few	commands	can	effectively	create	a	Spark	deployment	with	the
desired	size,	only	for	the	time	they	need	it	and	with	the	option	to	scale	up	or	down	their	deployment	while
running.

LHC	experiment	detector	trigger	simulation	for	LHC	upgrade
The	LHC	is	due	to	be	upgraded	to	higher	luminosity	during	the	2020s	which	requires	significant	enhancements
in	the	experiment	trigger	farms	which	filter	the	collisions.	Large	scale	Kubernetes	clusters	have	been	created	to
simulate	the	different	approaches	for	the	ATLAS	experiment	and	validate	the	design,	resulting	in	some	fine
tuning	of	Kubernetes	and	OpenStack	components.

Gitlab	Continuous	Integration	Runners
Gitlab	enables	users	to	build	CI/CD	jobs	and	execute	them	on	shared	or	project	specific	runners.	CERN	users
can	leverage	the	CERN	Container	Service	to	test	and	build	software,	build	and	publish	container	images	and
documentation	or	set	complex	pipelines	managing	the	full	application	lifecycle,	including	automated
deployments	into	different	environments.

Federated	Kubernetes	compute	farms	with	external	clouds
CERN	uses	federations	of	Kubernetes	clusters	to	support	multi-cloud	operations.	Multiple	clusters	can	be
seamlessly	integrated	across	clouds	of	varying	technologies,	including	AWS,	GCE	and	OpenStack	clouds	such
as	CERN	and	the	T-Systems	Open	Telekom	Cloud	as	demonstrated	at	Kubecon	2018.

Integrating	virtual	machines,	container	engines	and	bare-metal	under	a	single	framework	provides	for	easy	views	on
usage	accounting,	ownership	and	quota.	Manila	storage	drivers	for	Kubernetes	allow	transparent	provisioning	of	file
shares.	This	supports	both	the	IT	department	in	capacity	planning	and	the	experiment	resource	coordinators	in	defining
the	priorities	for	their	working	groups.	Resource	management	policies	such	as	reassignment	or	expiry	of	resources	on
departure	of	staff	are	handled	in	consistent	workflows.

SK	Telecom

SK	Telecom	(SKT),	South	Korea’s	largest	telecommunications	operator,	has	been	exploring	optimized	approaches	for
deploying	OpenStack	on	Kubernetes	with	the	aim	of	putting	core	business	functions	on	containerized	OpenStack	by	the
end	of	2018.	SKT	leverages	Kolla	and	Openstack-Helm.	with	deployments	automated	by	Kubespray.	SKT	devotes	nearly
100%	of	it’s	development	efforts	to	OpenStack-Helm,	and	works	closely	with	AT&T	to	make	OpenStack-Helm	successful.

SKT	has	also	incorporated	other	tools	into	their	OpenStack	on	Kubernetes	efforts.	For	logging,	monitoring,	and	alarms,
they	are	using	Prometheus	and	Elasticsearch,	Fluent-bit,	and	Kibana,	all	of	which	are	default	reference	tools	in	the
OpenStack-Helm	community.	SKT	combines	all	of	these	into	a	single	closed-integrated	solution	called	TACO:	SKT	All
Container	OpenStack.

https://github.com/recast-hep
http://atlas.cern/
https://www.youtube.com/watch?v=2PRGUOxL36M
https://prometheus.io/
https://www.elastic.co/
https://fluentbit.io/
https://www.elastic.co/products/kibana


SKT	specifically	emphasizes	an	automated	continuous	integration/continuous	delivery	(CI/CD)	pipeline	around
containerized	Openstack	on	Kubernetes.	SKT’s	CI	system	consists	of	Jenkins,	Rally,	Tempest,	Docker	Registry,	as	well	as
Jira	and	Bitbucket.	SKT	also	developed	an	open	source	tool	called	Cookiemonster,	a	chaos-monkey	like	resiliency	test	tool
for	Kubernetes	deployment	that	performs	resiliency	tests	for	their	CI	pipeline.

With	every	change,	SKT	automatically	builds	and	tests	both	the	OpenStack	containers	and	Helm	charts.	Daily,	they
automatically	install	a	highly	available	OpenStack	deployment	with	three	control	nodes	and	two	compute-nodes,	run	400
test	cases	from	Tempest	against	it	to	validate	the	services,	and	finally	run	resiliency	testing	with	Cookiemonster	and
Rally.	The	complete	CI	system	is	illustrated	in	the	following	diagram:

SKT	automates	its	deployments	with	Armada,	a	sub-project	of	Airship,	which	was	introduced	in	the	community	as	a	new
open	infrastructure	project	by	AT&T.	SKT	is	collaborating	in	community	to	provide	enhancements	to	the	project	based	on
their	production	uses.

In	practical	use,	SKT	has	already	seen	a	large	number	of	benefits	from	deploying	OpenStack	on	Kubernetes	including:

Simple	and	Easy	Installations.
Cluster	Auto-Healing.
An	ability	to	upgrade	and	update	OpenStack	with	minimal	impact	to	running	services.
Rapid	adoption	of	advanced	release	methodologies,	including	blue-green	deployment,	canary	releases.
Complete	automated	management	of	Python	dependencies	through	container	isolation.
Secure	secret	and	configuration	management.
Fast	and	flexible	roll-outs	of	cluster	updates.

SKT	is	still	testing	the	approach,	but	is	actively	moving	towards	running	their	OpenStack-Helm	deployments	in
production.	By	end	of	this	year,	SKT	will	have	at	least	three	production	clusters,	with	the	fourth	and	largest	coming	online
in	2019.	These	use	cases	include:

Big	Data	platform	(planned	to	go	live	Q4	2018)
A	virtual	desktop	infrastructure	platform	(production	ready	by	Q4	2018)
A	General	purpose	Internal	Private	Cloud	(planned	to	go	live	Q3	2018)
A	telco	network	infrastructure	built	on	virtual	network	functions	(planned	to	open	sometime	in	2019)

SKT	is	also	trying	to	improve	automation	on	telecom	infrastructure	operation	by	utilizing	containerized	VNFs	and
leveraging	containers’	auto	healing	and	fast	scale-out	features.	In	order	to	allow	interaction	between	virtual	machine
based	VNFs	and	containerized	VNFs,	Simplified	Overlay	Network	Architecture	(SONA),	which	is	a	virtual	network	solution
for	OpenStack,	will	support	communication	between	VMs	and	containers.	SONA	uses	the	Kuryr	project	for	integration	of
OpenStack	and	Kubernetes,	and	it	optimizes	network	performance	using	software	defined	networking	technologies.

Overall,	SKT	is	finding	that	Kubernetes	helps	solve	many	of	the	complexities	of	deploying	and	operating	OpenStack.
Simplifying	OpenStack	gives	them	a	powerful	approach	to	deliver	advanced	infrastructure	innovation	for	the	5G	era.

https://jenkins.io/
https://docs.openstack.org/developer/rally/
https://docs.openstack.org/tempest/latest/
https://github.com/sktelecom-oslab/cookiemonster
https://github.com/att-comdev/armada
http://www.airshipit.org/
https://wiki.onosproject.org/display/ONOS/SONA%3A+DC+Network+Virtualization


Focusing	efforts	on	Openstack	on	Kubernetes	dramatically	increased	their	internal	capability	to	deal	with	the	evolving
shift	toward	microservices	in	containers	and	become	a	critical	infrastructure	for	delivering	Artificial	Intelligence,	Internet
of	Things,	and	Machine	Learning.

Superfluidity

The	Superfluidity	project	is	made	up	of	18	partners	from	12	European	countries.	It	aims	to	enhance	the	ability	to
instantiate	services	on-the-fly,	run	them	anywhere	in	the	network	(core,	aggregation,	edge)	and	shift	them	transparently
to	different	locations.	SUPERFLUIDITY	is	a	European	Research	project	(Horizon	2020)	trying	to	build	the	basic
infrastructure	blocks	for	5G	networks	by	leveraging	and	extending	well	known	open	source	projects.	SUPERFLUIDITY	will
provide	a	converged	cloud-based	5G	concept	that	will	enable	innovative	use	cases	in	the	mobile	edge,	empower	new
business	models,	and	reduce	investment	and	operational	costs.

To	pursue	these	goals,	the	project	consortium	is	shifting	away	from	legacy,	VM-based	applications	to	Cloud	Native
containerized	applications.	Kuryr	serves	as	a	bridge	between	OpenStack	virtual	machines,	and	Kubernetes	and	OpenShift
containerized	services.

The	project	makes	use	of	ManageIQ	as	a	central	networks	function	virtualization	orchestrator	(NFVO),	Ansible	for
Application	deployment	and	lifecycle	management,	OpenStack	services	including	Heat,	Neutron,	and	Octavia,	and
Kubernetes	through	OpenShift	for	VMs	and	containers	integration.

By	leveraging	Ansible	playbooks	executed	from	the	ManageIQ	appliance,	SUPERFLUIDITY	offers	a	common	way	to	deploy
applications.	These	applications	in	turn	use	the	cloud	orchestration	functionality	provided	by	OpenStack	Heat	templates
and	OpenShift	templates.

The	consortium	deploys	5G	cloud	radio	access	networks	(CRAN)	and	mobile	edge	computing	(MEC)	components	within
containers.	It	also	deploys	high	throughput	applications	like	video	streaming	on	top	of	the	distributed	infrastructure.

Shifting	toward	a	cloud	native	approach	to	application	delivery	allows	for	rapid	and	resilient	SUPERFLUIDITY	installations.
It	enables	a	smooth	transition	from	VM-based	applications	and	components	to	containers,	while	retaining	the	versatility
to	enable	VMs	for	some	specific	applications.	Examples	of	these	applications	are	special	security	protections	or	network
acceleration	required	by	single-route	input/output	virtualization	(SRIOV).

In	scale	performance	testing,	SUPERFLUIDITY	was	able	to	launch	approximately	1000	pods	at	a	rate	of	22	pods/second
(with	time	measured	from	creation	to	running).	This	remarkable	performance	was	achieved	by	running	OpenShift	on	VMs
managed	by	OpenStack,	with	Kuryr	acting	as	a	pod	network	driver	to	avoid	double-encapsulation	performance	hits.

IV.	Conclusion

Over	the	past	few	years,	as	containers	have	become	an	important	tool	for	developers	and	organizations	alike,	OpenStack
has	leveraged	its	modular	design	and	expansive	community	to	integrate	container	technologies	at	many	levels.	This	can
be	seen	both	by	the	various	organizations	bringing	containers	and	OpenStack	into	production,	and	the	number	of	projects
that	work	alongside	containers	to	deliver	new	capabilities.	The	OpenStack	Foundation	is	committed	to	ensuring	that
emerging	technologies	can	be	incorporated	and	utilized	within	OpenStack,	and	containers	are	an	important	example	of
that	commitment.

To	learn	more,	visit	the	Containers	Landing	Page	,	where	you	can	find	a	copy	of	this	document	as	well	as	links	to	dozens
of	videos	focused	on	the	integrations	of	OpenStack	and	containers.	Kubernetes	SIG-OpenStack	has	a	Slack	channel,
mailing	list,	and	weekly	meeting	if	you	engage	directly	with	the	community	that’s	building	Kubernetes	and	OpenStack

http://superfluidity.eu/
https://ec.europa.eu/programmes/horizon2020/
http://manageiq.org/
https://www.openshift.com/
https://www.openstack.org/containers/
https://github.com/kubernetes/community/tree/master/sig-openstack


integrations.

V.	Open	Source	Project	Index

Airship

Airship	is	a	collection	of	interoperable	and	loosely	coupled	open	source	tools	that	provide	automated	cloud	provisioning
and	management	in	a	declarative	way,	based	around	Kubernetes	as	an	application	platform.

Ansible

Ansible	is	a	commonly	used	orchestration	tool	used	to	deploy	and	manage	OpenStack	installations.

Cinder

OpenStack	Cinder	offers	block	storage	as	a	service,	providing	a	single	API	backed	by	over	seventy	different	possible
storage	drivers.

Cloud	Provider	OpenStack

Cloud	Provider	OpenStack	is	the	implementation	of	the	Kubernetes	Cloud	Provider	interface.	It	allows	an	OpenStack-
hosted	Kubernetes	cluster	to	directly	access	storage	and	load	balancer	resources	in	the	OpenStack	cloud.

Calico

Calico	is	a	network	overlay	with	drivers	for	both	Kubernetes	and	OpenStack	that	features	L3-only	routing.

Cyborg

Cyborg	is	an	OpenStack	project	that	provides	a	general	management	framework	for	hardware	accelerators	including
FPGA,	GPU,	ASIC,	and	others.	Work	is	in	progress	to	surface	a	general	hardware	interface	to	pods.

Docker

Docker	is	an	open	source	container	virtualization	framework,	used	to	host	containerized	applications.

Helm

Helm	is	the	official	package	manager	for	Kubernetes.	Application	deployments	are	described	by	Helm-Charts,	which	can
be	automatically	deployed	and	managed	on	a	Kubernetes	cluster.

Ironic

Ironic	is	the	OpenStack	bare-metal	service.	Running	either	as	a	standalone	service	or	as	a	driver	to	OpenStack	Nova,	it
can	manage	the	complete	life-cycle	of	bare-metal	systems,	including	enrollment,	provisioning,	maintenance,	and
decommissioning.

Loci

LOCI	is	an	OpenStack	project	to	build	lightweight,	OCI	compliant	containers	for	OpenStack	projects.

LXC

LXC	is	a	low-level	container	virtualization	interface	that	takes	advantage	of	Linux	kernel	namespace	isolation	and	other
technologies	to	create	isolated	linux	runtimes.

Kata	Containers

Kata	Containers	is	a	standard	implementation	of	lightweight	Virtual	Machines	(VMs)	that	feel	and	perform	like	containers,
but	provide	the	workload	isolation	and	security	advantages	of	VMs.

Keystone

Keystone	is	the	OpenStack	Identity	service	that	provides	means	for	authenticating	and	managing	user	accounts	and	role
information	primarily	for	the	OpenStack	cloud	environment,	but	also	as	a	plugin	to	other	environments,	including
Kubernetes.

Kolla	(Containers)

Kolla	(Containers)	is	an	OpenStack	project	to	build	containers	for	each	OpenStack	service.	It	includes	a	sophisticated
build	and	templating	systems,	and	is	capable	of	building	containers	from	both	source	and	packages	on	a	variety	of	host

file:///tmp/tmp_wkhtmlto_pdf_eb54LN.html#airship
file:///tmp/tmp_wkhtmlto_pdf_eb54LN.html#ansible
file:///tmp/tmp_wkhtmlto_pdf_eb54LN.html#cinder
file:///tmp/tmp_wkhtmlto_pdf_eb54LN.html#cloud-provider-openstack
file:///tmp/tmp_wkhtmlto_pdf_eb54LN.html#calico
file:///tmp/tmp_wkhtmlto_pdf_eb54LN.html#cyborg
file:///tmp/tmp_wkhtmlto_pdf_eb54LN.html#docker
file:///tmp/tmp_wkhtmlto_pdf_eb54LN.html#helm
file:///tmp/tmp_wkhtmlto_pdf_eb54LN.html#ironic
file:///tmp/tmp_wkhtmlto_pdf_eb54LN.html#loci
file:///tmp/tmp_wkhtmlto_pdf_eb54LN.html#lxc
file:///tmp/tmp_wkhtmlto_pdf_eb54LN.html#kata-containers
file:///tmp/tmp_wkhtmlto_pdf_eb54LN.html#keystone
file:///tmp/tmp_wkhtmlto_pdf_eb54LN.html#kolla-containers


operating	systems.

Kolla	Ansible

Kolla	Ansible	is	an	OpenStack	project	that	uses	Ansible	to	deploy	and	maintain	a	full	OpenStack	installation	using	Kolla
containers.

Kubernetes

Kubernetes	is	a	container	orchestration	system	that	delivers	robust	and	highly-available	applications	on	top	of	cloud-
infrastructure.

Kuryr

Kuryr	is	an	OpenStack	project	that	provides	a	Neutron	network	overlay	to	container	runtimes,	including	Docker	and
Kubernetes.	It	aims	to	be	the	“integration	bridge”	for	container	and	VM	networks.

Magnum

Magnum	is	an	OpenStack	project	that	offers	managed	container	platforms	as	a	service,	including	Kubernetes,	Docker
Swarm,	Mesos,	and	DC/OS	platforms.	It	is	capable	of	creating	tenant	isolated	application	platforms	through	a	simple	user-
facing	API.

Neutron

Neutron	is	the	OpenStack	software-defined	networking	service,	offering	a	single	API	to	deliver	dynamic	network
infrastructure	backed	by	dozens	of	network	drivers.

OpenStack	Ansible

OpenStack	Ansible	is	a	project	for	building	OpenStack	services	into	LXC	containers,	and	for	deploying	and	managing
OpenStack	installations	within	those	containerized	services.

OpenStack	Helm

OpenStack	Helm	is	an	OpenStack	project	that	deploys	and	manages	the	lifecycle	of	OpenStack	and	supporting
infrastructure	on	top	of	Kubernetes	(eg	Ceph	and	MariaDB)	,	delivering	production	ready	deployments,	for	a	range	of	use
cases	from	small	edge	deployments	to	large	central	offices.	Leveraging	the	Helm	package	management	system.
OpenStack	Helm	has	support	for	both	baremetal	(Ironic)	and	virtual	(Nova/KVM)	workload	management,	and	is	image
agnostic	supporting	both	LOCI	and	Kolla	containers.

Qinling

Qinling	is	an	OpenStack	project	to	deliver	Functions	as	a	Service.	Qinling	supports	different	container	orchestration
platforms,	such	as	Kubernetes	and	Docker	Swarm,	as	well	as	different	function	package	storage	backends	such	as	local
file-store,	OpenStack	Swift,	and	S3.

Triple-O

TripleO	is	a	project	aimed	at	installing,	upgrading	and	operating	OpenStack	clouds	using	OpenStack’s	cloud	services	as
the	foundation	-	building	on	Nova,	Ironic,	Neutron,	Heat	and	Ansible	to	automate	cloud	management.

Zun

Zun	is	the	OpenStack	Containers	service.	It	aims	to	provide	an	API	service	for	running	application	containers	without	the
need	to	manage	servers	or	clusters.

VI.	Authors

Members	of	the	OpenStack	SIG-Kubernetes	Community

Jaesuk	Ahn,	SK	Telecom
Christian	Berendt,	Betacloud	Solutions	GmbH
Anne	Bertucio,	OpenStack	Foundation
Pete	Birley,	AT&T
Chris	Hoge,	OpenStack	Foundation
Lingxian	Kong,	Catalyst	Cloud
Hongbin	Lu,	Huawei
Daniel	Mellado,	Red	Hat,	Inc.
Allison	Price,	OpenStack	Foundation
David	Rabel,	B1	Systems	GmbH
Sangho	Shin,	SK	Telecom

file:///tmp/tmp_wkhtmlto_pdf_eb54LN.html#kolla-ansible
file:///tmp/tmp_wkhtmlto_pdf_eb54LN.html#kubernetes
file:///tmp/tmp_wkhtmlto_pdf_eb54LN.html#kuryr
file:///tmp/tmp_wkhtmlto_pdf_eb54LN.html#magnum
file:///tmp/tmp_wkhtmlto_pdf_eb54LN.html#neutron
file:///tmp/tmp_wkhtmlto_pdf_eb54LN.html#openstack-ansible
file:///tmp/tmp_wkhtmlto_pdf_eb54LN.html#openstack-helm
file:///tmp/tmp_wkhtmlto_pdf_eb54LN.html#qinling
file:///tmp/tmp_wkhtmlto_pdf_eb54LN.html#triple-o
file:///tmp/tmp_wkhtmlto_pdf_eb54LN.html#zun


Davanum	Srinivas,	Huawei
Luis	Tomás,	Red	Hat,	Inc.
Sam	Yaple,	Verizon	Digital	Media	Services
Mikhail	Fedosin,	Red	Hat,	Inc.
Flavio	Percoco,	Red	Hat,	Inc.

Editor

Brian	E	Whitaker,	Zettabyte	Content	LLC


